A Spectral-Element Discontinuous Galerkin Lattice Boltzmann Method for Incompressible Flows
نویسندگان
چکیده
We present a spectral-element discontinuous Galerkin lattice Boltzmann method for solving single-phase incompressible flows. Decoupling the collision step from the streaming step offers numerical stability at high Reynolds numbers. In the streaming step, we employ high-order spectral-element discretizations using a tensor product basis of one-dimensional Lagrange interpolation polynomials based on GaussLobatto-Legendre grids. Our scheme is cost-effective with a fully diagonal mass matrix, advancing time integration with the fourth-order Runge-Kutta method. We present a consistent boundary treatment allowing us to use both central and LaxFriedrichs fluxes for the numerical flux in the discontinuous Galerkin approach. We present two benchmark cases: lid-driven cavity flows for Re=400–5000 and flows around an impulsively started cylinder for Re=550–9500. Computational results are compared with those of other theoretical, experimental, and computational work that used a multigrid method, a vortex method, and a spectral element model.
منابع مشابه
A spectral-element discontinuous Galerkin lattice Boltzmann method for nearly incompressible flows
Article history: Received 24 October 2009 Received in revised form 20 September 2010 Accepted 20 September 2010 Available online 29 September 2010
متن کاملA Spectral Element Discontinuous Galerkin Thermal lattice Boltzmann method for Conjugate Heat Transfer applications
We present a spectral-element discontinuous Galerkin thermal lattice Boltzmann method (SEDG-TLBM) for fluid-solid conjugate heat transfer applications. In this work, we revisit the discrete Boltzmann equation (DBE) for nearly incompressible flows and propose a numerical scheme for conjugate heat transfer applications on unstructured, non-uniform mesh distributions. We employ a double-distributi...
متن کاملExternal and Internal Incompressible Viscous Flows Computation using Taylor Series Expansion and Least Square based Lattice Boltzmann Method
The lattice Boltzmann method (LBM) has recently become an alternative and promising computational fluid dynamics approach for simulating complex fluid flows. Despite its enormous success in many practical applications, the standard LBM is restricted to the lattice uniformity in the physical space. This is the main drawback of the standard LBM for flow problems with complex geometry. Several app...
متن کاملStochastic finite difference lattice Boltzmann method for steady incompressible viscous flows
With the advent of state-of-the-art computers and their rapid availability, the time is ripe for the development of efficient uncertainty quantification (UQ) methods to reduce the complexity of numerical models used to simulate complicated systems with incomplete knowledge and data. The spectral stochastic finite element method (SSFEM) which is one of the widely used UQ methods, regards uncerta...
متن کاملImplementation of D3Q19 Lattice Boltzmann Method with a Curved Wall Boundary Condition for Simulation of Practical Flow Problems
In this paper, implementation of an extended form of a no-slip wall boundary condition is presented for the three-dimensional (3-D) lattice Boltzmann method (LBM) for solving the incompressible fluid flows with complex geometries. The boundary condition is based on the off-lattice scheme with a polynomial interpolation which is used to reconstruct the curved or irregular wall boundary on the ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009